Newer
Older
-------------------------------------------------------------------------------
-- Project ELE8304 : Circuits intégrés à très grande échelle
-------------------------------------------------------------------------------
-- File riscv_decode.vhd
-- Authors Titouan Luard <luardtitouan@gmail.com>
-- Yann Roberge <yann.roberge@polymtl.ca>
-- Lab ELE8304-9
-- Date 2021-11-28
-------------------------------------------------------------------------------
-- Brief RISC-V Decode pipeline stage
-- Breaks down instructions into their specific components,
-- Reads from & Writes into the register file,
-- Generate outputs needed for the Execute stage
-------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;
library work;
use work.riscv_pkg.all;
entity riscv_decode is
port (
-- Entrées provenant de l'étage FETCH
-- Entrées provenant de l'étage WRITE-BACK
i_wr_addr : in std_logic_vector(REG_WIDTH-1 downto 0);
i_wr_data : in std_logic_vector(XLEN-1 downto 0);
i_we : in std_logic;
-- Entrée provenant de l'étage EXECUTE
i_flush : in std_logic;
-- Entrées externes au pipeline
i_rstn : in std_logic;
i_clk : in std_logic;
-- Sorties
rs1_data : out std_logic_vector(XLEN-1 downto 0);
rs2_data : out std_logic_vector(XLEN-1 downto 0);
end entity riscv_decode;
architecture beh of riscv_decode is
-- Signaux internes Predecode
signal opcode : std_logic_vector(OPCODE_WIDTH-1 downto 0);
signal funct3 : std_logic_vector(2 downto 0);
signal funct7 : std_logic_vector(6 downto 0);
signal rs1_addr : std_logic_vector(REG_WIDTH-1 downto 0);
signal rs2_addr : std_logic_vector(REG_WIDTH-1 downto 0);
signal rd : std_logic_vector(REG_WIDTH-1 downto 0);
-- opcode funct3 funct7 rs1 rs2
-- jump
-- branch
-- imm
-- Signaux internes Decode
-- alu_opcode
-- shamt
-- arith
-- sign
signal jump : std_logic;
signal branch : std_logic;
signal alu_opcode : std_logic_vector(ALUOP_WIDTH-1 downto 0);
signal sign : std_logic;
signal imm : std_logic_vector(XLEN-1 downto 0);
alias instruction is i_fetch_reg.instruction;
begin
-- Predecode
-- Décompose les signaux en fonction de leurs types (opcodes)
opcode <= i_fetch_reg.instruction(OPCODE_WIDTH-1 downto 0);
predecode:
process (opcode) is
begin
case opcode is
-- R-TYPE
-- FIXME: Le code répété
when OPCODE_JALR =>
funct7 <= instruction(31 downto 25);
rs2_addr <= instruction(24 downto 20);
rs1_addr <= instruction(19 downto 15);
funct3 <= instruction(14 downto 12);
rd <= instruction(11 downto 7);
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
when OPCODE_ALU_R_TYPE =>
funct7 <= instruction(31 downto 25);
rs2_addr <= instruction(24 downto 20);
rs1_addr <= instruction(19 downto 15);
funct3 <= instruction(14 downto 12);
rd <= instruction(11 downto 7);
-- I-TYPE
-- FIXME: Le code répété
when OPCODE_LW =>
funct7 <= (others => '0');
rs2_addr <= (others => '0');
rs1_addr <= instruction(19 downto 15);
funct3 <= instruction(14 downto 12);
rd <= instruction(11 downto 7);
when OPCODE_ALU_I_TYPE =>
funct7 <= (others => '0');
rs2_addr <= (others => '0');
rs1_addr <= instruction(19 downto 15);
funct3 <= instruction(14 downto 12);
rd <= instruction(11 downto 7);
-- S-TYPE
when OPCODE_SW =>
funct7 <= (others => '0');
rs2_addr <= instruction(24 downto 20);
rs1_addr <= instruction(19 downto 15);
funct3 <= instruction(14 downto 12);
rd <= (others => '0');
-- B-TYPE
when OPCODE_BEQ =>
funct7 <= (others => '0');
rs2_addr <= instruction(24 downto 20);
rs1_addr <= instruction(19 downto 15);
funct3 <= instruction(14 downto 12);
rd <= (others => '0');
-- U-TYPE
when OPCODE_LUI =>
funct7 <= (others => '0');
rs2_addr <= (others => '0');
rs1_addr <= (others => '0');
funct3 <= (others => '0');
rd <= instruction(11 downto 7);
-- J-TYPE
when OPCODE_JAL =>
funct7 <= (others => '0');
rs2_addr <= (others => '0');
rs1_addr <= (others => '0');
funct3 <= (others => '0');
rd <= instruction(11 downto 7);
-- Unsupported instructions
when others =>
funct7 <= (others => '0');
rs2_addr <= (others => '0');
rs1_addr <= (others => '0');
funct3 <= (others => '0');
rd <= (others => '0');
end case;
end process predecode;
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
-- Gestion des valeurs immédiates
immediate : process (opcode)
begin
case opcode is
-- I-TYPE
-- FIXME: Le code répété
when OPCODE_LW =>
imm(31 downto 11) <= (others => instruction(31));
imm(10 downto 5) <= instruction(30 downto 25);
imm(4 downto 1) <= instruction(24 downto 21);
imm(0) <= instruction(20);
when OPCODE_ALU_I_TYPE =>
imm(31 downto 11) <= (others => instruction(31));
imm(10 downto 5) <= instruction(30 downto 25);
imm(4 downto 1) <= instruction(24 downto 21);
imm(0) <= instruction(20);
-- S-TYPE
when OPCODE_SW =>
imm(31 downto 11) <= (others => instruction(31));
imm(10 downto 5) <= instruction(30 downto 25);
imm(4 downto 1) <= instruction(11 downto 8);
imm(0) <= instruction(7);
-- B-TYPE
when OPCODE_BEQ =>
imm(31 downto 12) <= (others => instruction(31));
imm(11) <= instruction(7);
imm(10 downto 5) <= instruction(30 downto 25);
imm(4 downto 1) <= instruction(11 downto 8);
imm(0) <= '0';
-- U-TYPE
when OPCODE_LUI =>
-- FIXME: Pourquoi pas avoir compacté les 2 lignes suivantes
-- à la figure 3 de l'énoncé?
imm(31) <= instruction(31);
imm(30 downto 20) <= instruction(30 downto 20);
imm(19 downto 12) <= instruction(19 downto 12);
imm(11 downto 0) <= (others => '0');
-- J-TYPE
when OPCODE_JAL =>
imm(31 downto 20) <= (others => instruction(31));
imm(19 downto 12) <= instruction(19 downto 12);
imm(11) <= instruction(20);
imm(10 downto 5) <= instruction(30 downto 25);
imm(4 downto 1) <= instruction(24 downto 21);
imm(0) <= '0';
-- R-TYPE
-- Unsupported instructions
when others =>
imm <= (others => '0');
end case;
end process immediate;
-- Instanciation du Register File
register_file: entity work.riscv_rf
port map (
i_clk => i_clk,
i_rstn => i_rstn,
i_we => i_we,
i_addr_ra => rs1_addr,
o_data_ra => rs1_data,
i_addr_rb => rs2_addr,
o_data_rb => rs2_data,
i_addr_w => i_wr_addr,
i_data_w => i_wr_data
);
-- Decode
-- Écrire le registre ID/EX
o_decode_reg.shamt <= (others => '1');
o_decode_reg.arith <= '1';
o_decode_reg.sign <= '1';
o_decode_reg.jump <= '1';
o_decode_reg.branch <= '1';
o_decode_reg.pc <= (others => '1');
o_decode_reg.imm <= (others => '1');
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
-- Références:
-- Écrire le registre pointé
-- write_reg_file:
-- process (i_clk) is
-- begin
--
-- if rising_edge(i_clk) then
-- if i_rstn = '1' then
-- if reg_file_wr_en = '1' then
-- reg_file(to_integer(unsigned(i_addr_w))) <= i_data_w;
-- else
-- reg_file <= reg_file;
-- end if;
-- else
-- reg_file <= (others => (others => '0'));
-- end if;
-- end if;
-- end process write_reg_file;
-- Transférer la valeur écrite vers un tampon
-- transfer_write_buffers:
-- process (i_clk) is
-- begin
-- if rising_edge(i_clk) then
-- if i_rstn = '1' then
-- write_buffer <= i_data_w;
-- else
-- write_buffer <= (others => '0');
-- end if;
-- end if;
-- end process transfer_write_buffers;
end architecture beh;