Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
C
Code Computer Vision
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Jira
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Container Registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
PolySTAR
RoboMaster
Computer Vision
Code Computer Vision
Commits
398d5827
Commit
398d5827
authored
5 years ago
by
Mathieu Beligon
Browse files
Options
Downloads
Patches
Plain Diff
[common] (scripts) Add a script to create tensorflow records from VOC dset
parent
31b331c0
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
common/research_common/dataset/tensorflow_record.py
+91
-0
91 additions, 0 deletions
common/research_common/dataset/tensorflow_record.py
common/research_common/scripts/create_tensorflow_records.py
+22
-0
22 additions, 0 deletions
common/research_common/scripts/create_tensorflow_records.py
with
113 additions
and
0 deletions
common/research_common/dataset/tensorflow_record.py
0 → 100644
+
91
−
0
View file @
398d5827
import
hashlib
from
pathlib
import
Path
from
typing
import
Dict
,
Any
,
Iterable
import
tensorflow
as
tf
from
lxml
import
etree
from
tensorflow_core.python.lib.io
import
python_io
from
tqdm
import
tqdm
from
object_detection.utils.dataset_util
import
(
float_list_feature
,
bytes_feature
,
int64_feature
,
bytes_list_feature
,
int64_list_feature
,
recursive_parse_xml_to_dict
,
)
from
object_detection.utils.label_map_util
import
get_label_map_dict
from
research_common.constants
import
TENSORFLOW_RECORDS_DIR
from
research_common.dataset.dataset
import
Dataset
from
research_common.tensorflow_utils
import
patch_tf_v2
patch_tf_v2
()
# FIXME: Needed for version compatibility
class
TensorflowExampleFactory
:
def
__init__
(
self
,
dataset
:
Dataset
):
self
.
dataset
=
dataset
self
.
label_map
=
get_label_map_dict
(
str
(
TENSORFLOW_RECORDS_DIR
/
"
label_map.pbtxt
"
))
def
from_annotation_path
(
self
,
annotation_path
:
Path
)
->
tf
.
train
.
Example
:
annotation
=
self
.
_load_annotation
(
annotation_path
)
return
self
.
from_annotation
(
annotation
,
annotation_path
.
stem
)
def
from_annotation
(
self
,
annotation
:
Dict
[
str
,
Any
],
img_name
:
str
)
->
tf
.
train
.
Example
:
full_path
=
(
self
.
dataset
.
images_dir_path
/
img_name
).
with_suffix
(
"
.jpg
"
)
encoded_jpg
=
full_path
.
read_bytes
()
key
=
hashlib
.
sha256
(
encoded_jpg
).
hexdigest
()
width
=
int
(
annotation
[
"
size
"
][
"
width
"
])
height
=
int
(
annotation
[
"
size
"
][
"
height
"
])
xmin
=
[]
ymin
=
[]
xmax
=
[]
ymax
=
[]
classes
=
[]
classes_text
=
[]
for
obj
in
annotation
.
get
(
"
object
"
,
[]):
xmin
.
append
(
float
(
obj
[
"
bndbox
"
][
"
xmin
"
])
/
width
)
ymin
.
append
(
float
(
obj
[
"
bndbox
"
][
"
ymin
"
])
/
height
)
xmax
.
append
(
float
(
obj
[
"
bndbox
"
][
"
xmax
"
])
/
width
)
ymax
.
append
(
float
(
obj
[
"
bndbox
"
][
"
ymax
"
])
/
height
)
classes_text
.
append
(
obj
[
"
name
"
].
encode
(
"
utf8
"
))
classes
.
append
(
self
.
label_map
[
obj
[
"
name
"
]])
return
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
{
"
image/height
"
:
int64_feature
(
height
),
"
image/width
"
:
int64_feature
(
width
),
"
image/key/sha256
"
:
bytes_feature
(
key
.
encode
(
"
utf8
"
)),
"
image/encoded
"
:
bytes_feature
(
encoded_jpg
),
"
image/format
"
:
bytes_feature
(
"
jpeg
"
.
encode
(
"
utf8
"
)),
"
image/object/bbox/xmin
"
:
float_list_feature
(
xmin
),
"
image/object/bbox/xmax
"
:
float_list_feature
(
xmax
),
"
image/object/bbox/ymin
"
:
float_list_feature
(
ymin
),
"
image/object/bbox/ymax
"
:
float_list_feature
(
ymax
),
"
image/object/class/text
"
:
bytes_list_feature
(
classes_text
),
"
image/object/class/label
"
:
int64_list_feature
(
classes
),
}
)
)
@staticmethod
def
_load_annotation
(
annotation_path
:
Path
)
->
Dict
[
str
,
Any
]:
xml
=
etree
.
fromstring
(
annotation_path
.
read_text
())
return
recursive_parse_xml_to_dict
(
xml
)[
"
annotation
"
]
def
create_tf_record_from_datasets
(
datasets
:
Iterable
[
Dataset
],
name
:
str
):
writer
=
python_io
.
TFRecordWriter
(
str
(
TENSORFLOW_RECORDS_DIR
/
f
"
{
name
}
.record
"
))
for
dataset
in
datasets
:
example_factory
=
TensorflowExampleFactory
(
dataset
)
for
annotation_path
in
tqdm
(
dataset
.
annotation_paths
,
desc
=
dataset
.
dataset_name
):
writer
.
write
(
example_factory
.
from_annotation_path
(
annotation_path
).
SerializeToString
())
writer
.
close
()
def
create_tf_record_from_dataset
(
dataset
:
Dataset
):
create_tf_record_from_datasets
([
dataset
],
name
=
dataset
.
dataset_name
)
This diff is collapsed.
Click to expand it.
common/research_common/scripts/create_tensorflow_records.py
0 → 100644
+
22
−
0
View file @
398d5827
from
research_common.dataset.roco.roco_datasets
import
ROCODataset
from
research_common.dataset.split
import
Split
from
research_common.dataset.split_dataset
import
SplitDataset
from
research_common.dataset.tensorflow_record
import
create_tf_record_from_dataset
,
create_tf_record_from_datasets
def
create_one_record_per_roco_dset
():
for
roco_set
in
ROCODataset
:
for
split
in
Split
:
create_tf_record_from_dataset
(
SplitDataset
(
roco_set
,
split
))
def
create_one_roco_record
():
for
split
in
Split
:
create_tf_record_from_datasets
(
[
SplitDataset
(
roco_dset
,
split
)
for
roco_dset
in
ROCODataset
],
f
"
DJI_ROCO_
{
split
.
name
}
"
)
if
__name__
==
"
__main__
"
:
create_one_record_per_roco_dset
()
create_one_roco_record
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment