diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..6df7659df6b087da954ab84d5bc2640228a91c3b
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,133 @@
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+pip-wheel-metadata/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+#  Usually these files are written by a python script from a template
+#  before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+*.py,cover
+.hypothesis/
+.pytest_cache/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+db.sqlite3-journal
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+.python-version
+
+# pipenv
+#   According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
+#   However, in case of collaboration, if having platform-specific dependencies or dependencies
+#   having no cross-platform support, pipenv may install dependencies that don't work, or not
+#   install all needed dependencies.
+#Pipfile.lock
+
+# PEP 582; used by e.g. github.com/David-OConnor/pyflow
+__pypackages__/
+
+# Celery stuff
+celerybeat-schedule
+celerybeat.pid
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+.dmypy.json
+dmypy.json
+
+# Pyre type checker
+.pyre/
+
+# MAC
+.DS_Store
+.idea
\ No newline at end of file
diff --git a/common/README.md b/common/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..d9d0f12305b592b0776f0ec4e77d676c85fce961
--- /dev/null
+++ b/common/README.md
@@ -0,0 +1,70 @@
+
+# Computer Vision Common code
+
+This code is designed to be shared across projects
+
+
+## Setup
+
+### Relative imports
+
+If you are using pycharm, then add [common](./) as `Sources Root` (right click on common, then `Mark Directory As` > `Sources Root`).
+
+![Add common to Sources Root](./doc/add_common_to_source_root.png)
+
+It will enable the relative imports.
+
+
+### Requirements
+
+Install the required python modules
+```bash
+python -m pip install -r requirements.txt
+```
+
+## Dataset
+
+### Twitch
+
+#### Idea
+
+There are a lot of video posted by RoboMaster on their [twitch channel](https://www.twitch.tv/robomaster).
+
+**But**, there are 2 issues to convert it to an exploitable dataset:
+ - Videos are very long (a dozen of hours per video)
+ - Only short sequences (per chunks of ~5s) are from robot views
+ 
+We found that it was possible to detect the HUD on the videos, to check if the image is a robot view or not. 
+
+#### Setup
+
+##### ffmpeg
+
+To split the video into frames, we use ffmpeg.
+
+**Note:** If you get an error using ffmpeg, be sure that you installed the right python package (it should be `ffmpeg-python`, not `ffmpeg` or `python-ffmpeg`) 
+
+###### MAC
+
+```bash
+brew install ffmpeg
+```
+
+###### Windows
+
+You should follow [this tutorial](https://video.stackexchange.com/questions/20495/how-do-i-set-up-and-use-ffmpeg-in-windows).
+
+
+##### TwitchLeecher
+
+We use [TwitchLeecher](https://github.com/Franiac/TwitchLeecher/releases) to download the videos. Unfortunately, it is only available on Windows. If you find a way to download entire videos on Mac, please update this README.
+
+#### Procedure to process a video
+
+1. First, go on the [google sheet](https://docs.google.com/spreadsheets/d/1kIrMOjcKJ8hslZoVMx1D0H7QYj9nQLFvzUAQ1U4Le-I/edit#gid=0), and choose a video that nobody already did, and put your name in the 2nd column
+2. Download the video with TwitchLeecher, in **720p**
+3. Rename it using the video id on twitch, and place it in [../dataset/twitch/videos](../dataset/twitch/videos)
+4. Launch the python script [./research/scripts/monitor_new_twitch_frames.py](./research/scripts/monitor_new_twitch_frames.py) through PyCharm. It will check for new frames in the [raw-frames directory](../dataset/twitch/raw-frames), and move those that are a robot view.
+5. Launch the second python script [./research/scripts/split_video.py](./research/scripts/split_video.py), with the video id as parameter (In Pycharm, `Run` > `Edit Configurations...`, then in parameters enter the id).
+
+The frames will appear in the [../dataset/twitch/robots-views](../dataset/twitch/robots-views) folder.
diff --git a/common/doc/add_common_to_source_root.png b/common/doc/add_common_to_source_root.png
new file mode 100644
index 0000000000000000000000000000000000000000..42ab6eb3ff91ddb09ee39760011a747f7c24bd9b
Binary files /dev/null and b/common/doc/add_common_to_source_root.png differ
diff --git a/common/research/__pycache__/constants.cpython-37.pyc b/common/research/__pycache__/constants.cpython-37.pyc
deleted file mode 100644
index cb8a14f78b84fe640a606939105fdd40b1af32ed..0000000000000000000000000000000000000000
Binary files a/common/research/__pycache__/constants.cpython-37.pyc and /dev/null differ
diff --git a/common/research/dataset/twitch/is_robot_view.py b/common/research/dataset/twitch/is_robot_view.py
deleted file mode 100644
index f671e6b481c5fabe0cdeb5a1d135887e93adc5f9..0000000000000000000000000000000000000000
--- a/common/research/dataset/twitch/is_robot_view.py
+++ /dev/null
@@ -1,53 +0,0 @@
-from os import remove
-from pathlib import Path
-from shutil import move
-
-import numpy as np
-from scipy.spatial import distance
-from skimage import io
-from watchdog.events import FileSystemEvent, FileSystemEventHandler
-from watchdog.observers import Observer
-
-from research.constants import TWITCH_DSET
-
-
-ref_image = io.imread('mask.jpg')
-
-_MASK = ref_image[:, :, 1] > 50
-_REF_IMG_MASKED = ref_image*_MASK[:, :, np.newaxis]
-_THRESHOLD = 23
-
-
-def is_image_from_robot_view(path_to_image: Path) -> bool:
-    img = io.imread(path_to_image)
-    img_masked = img * _MASK[:, :, np.newaxis]
-    return distance.euclidean(img_masked.flatten() / 255, _REF_IMG_MASKED.flatten() / 255) < _THRESHOLD
-
-
-class NewFrameHandler(FileSystemEventHandler):
-
-    def __init__(self):
-        self.res_dir = (TWITCH_DSET / 'robots-views')
-        self.res_dir.mkdir(exist_ok=True, parents=True)
-
-    def on_created(self, event: FileSystemEvent):
-        if event.is_directory or not event.src_path.endswith('jpg'):
-            return
-        file_path = Path(event.src_path)
-        if is_image_from_robot_view(file_path):
-            res = self.res_dir / f'{file_path.parent.name}-{file_path.name}'
-            move(file_path, res)
-        else:
-            remove(file_path)
-
-    def __hash__(self):
-        return hash(self.__class__.__name__)
-
-
-if __name__ == '__main__':
-    obs = Observer()
-    obs.schedule(NewFrameHandler(), str(TWITCH_DSET / 'raw-frames'), recursive=True)
-    obs.start()
-
-    while 1:
-        pass
diff --git a/common/research/dataset/twitch/make_thumbnails.py b/common/research/dataset/twitch/make_thumbnails.py
index 14b46e88cff56fe16aed319ef6a5fcd046eab674..2b947d4c75506fdc474aae21061fff922c4924f4 100644
--- a/common/research/dataset/twitch/make_thumbnails.py
+++ b/common/research/dataset/twitch/make_thumbnails.py
@@ -25,7 +25,7 @@ class ThumbnailsGenerator:
 
     def _launch_creation(self, frames):
         ffmpeg. \
-            input(self.video_path). \
+            input(str(self.video_path)). \
             filter('fps', fps=self.FPS).\
             output(f"{self.output_folder}/frame_%d.jpg", frames=frames). \
             run(quiet=True)
@@ -47,11 +47,4 @@ class ThumbnailsGenerator:
         obs.start()
 
     def _get_frame_number(self):
-        return int(ffmpeg.probe(self.video_path)['format']['duration'].split('.')[0])
-
-
-if __name__ == '__main__':
-    _video_name = sys.argv[1]
-    print(f'Fragmenting video {_video_name}')
-    ThumbnailsGenerator(_video_name).run()
-
+        return int(ffmpeg.probe(str(self.video_path))['format']['duration'].split('.')[0])
diff --git a/common/research/dataset/twitch/robot_view.py b/common/research/dataset/twitch/robot_view.py
new file mode 100644
index 0000000000000000000000000000000000000000..25dd33b23037bf43be4c95de902328cb26d93b71
--- /dev/null
+++ b/common/research/dataset/twitch/robot_view.py
@@ -0,0 +1,39 @@
+from os import remove
+from pathlib import Path
+from shutil import move
+
+import numpy as np
+from scipy.spatial import distance
+from skimage import io
+from skimage.transform import resize
+
+from research.constants import TWITCH_DSET
+
+RES_DIR: Path = TWITCH_DSET / 'robots-views'
+RES_DIR.mkdir(parents=True, exist_ok=True)
+
+ref_image = io.imread(f'{__file__}/../mask.jpg')
+
+_MASK = ref_image[:, :, 1] > 50
+_REF_IMG_MASKED = ref_image*_MASK[:, :, np.newaxis]
+_THRESHOLD = 23
+
+
+def is_image_from_robot_view(path_to_image: Path) -> bool:
+    img = io.imread(path_to_image)
+    img_masked = img * _MASK[:, :, np.newaxis]
+    return distance.euclidean(img_masked.flatten() / 255, _REF_IMG_MASKED.flatten() / 255) < _THRESHOLD
+
+
+def process_image(path_to_image: Path):
+    if is_image_from_robot_view(path_to_image):
+        res_path = RES_DIR / f'{path_to_image.parent.name}-{path_to_image.name}'
+        move(str(path_to_image), str(res_path))
+        print(f'{path_to_image.stem} is a robot view, moving it')
+    else:
+        remove(str(path_to_image))
+
+
+def process_all_images_in_dir(dir_path: Path):
+    for path_to_image in dir_path.glob('*/*.jpg'):
+        process_image(path_to_image)
diff --git a/common/research/scripts/monitor_new_twitch_frames.py b/common/research/scripts/monitor_new_twitch_frames.py
new file mode 100644
index 0000000000000000000000000000000000000000..c70a9dea55780407acc4d05240ffc20080e344bf
--- /dev/null
+++ b/common/research/scripts/monitor_new_twitch_frames.py
@@ -0,0 +1,9 @@
+from time import sleep
+
+from research.constants import TWITCH_DSET
+from research.dataset.twitch.robot_view import process_all_images_in_dir
+
+if __name__ == '__main__':
+    while 1:
+        process_all_images_in_dir(TWITCH_DSET / 'raw-frames')
+        sleep(.1)
diff --git a/common/research/scripts/split_video.py b/common/research/scripts/split_video.py
new file mode 100644
index 0000000000000000000000000000000000000000..dffc460fdd0fe89e4d52024d1cd1860a9bd16bef
--- /dev/null
+++ b/common/research/scripts/split_video.py
@@ -0,0 +1,8 @@
+import sys
+
+from research.dataset.twitch.make_thumbnails import ThumbnailsGenerator
+
+if __name__ == '__main__':
+    _video_name = sys.argv[1]
+    print(f'Fragmenting video {_video_name}')
+    ThumbnailsGenerator(_video_name).run()
diff --git a/dataset/twitch/raw-frames/.gitignore b/dataset/twitch/raw-frames/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..c96a04f008ee21e260b28f7701595ed59e2839e3
--- /dev/null
+++ b/dataset/twitch/raw-frames/.gitignore
@@ -0,0 +1,2 @@
+*
+!.gitignore
\ No newline at end of file
diff --git a/dataset/twitch/videos/.gitignore b/dataset/twitch/videos/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..c96a04f008ee21e260b28f7701595ed59e2839e3
--- /dev/null
+++ b/dataset/twitch/videos/.gitignore
@@ -0,0 +1,2 @@
+*
+!.gitignore
\ No newline at end of file