diff --git a/common/research/dataset/twitch/NewVision.py b/common/research/dataset/twitch/NewVision.py new file mode 100644 index 0000000000000000000000000000000000000000..61efeecba4ca3bb137fecd44ccff3ab72f0572e8 --- /dev/null +++ b/common/research/dataset/twitch/NewVision.py @@ -0,0 +1,131 @@ +import cv2 +from pathlib import Path +import numpy +import math +import time +from research.constants import TWITCH_DSET +RES_DIR: Path = TWITCH_DSET / 'robots-views' + +t1 = time.time() + +Y_MIN_Z1 = 20 +Y_MAX_Z1 = 70 +THRESHOLD_ZONE_1 = 45 + +Y_MIN_Z2 = 270 +Y_MAX_Z2 = 370 +THRESHOLD_ZONE_2 = 45 + +Y_MIN_Z3 = 510 +Y_MAX_Z3 = 770 +THRESHOLD_ZONE_3 = 45 + +R = 0 +G = 1 +B = 2 + + +class Zone: + def __init__(self, y_min, y_max, threshold, img_pixels, image_mask): + + self.y_min = y_min + self.y_max = y_max + self.pixels = [ + (pix[0], pix[1]) + for pix in img_pixels + if 20 < pix[1] < 70 + ] + + self.moyenne_R = self.get_moyenne(R, image_mask) + self.moyenne_G = self.get_moyenne(G, image_mask) + self.moyenne_B = self.get_moyenne(B, image_mask) + self.threshold = threshold + + def get_moyenne(self, color, img): + return sum([img[pix[0], pix[1]][color] for pix in self.pixels]) / len(self.pixels) + + def get_moyennes(self, img): + mr, mg, mb = 0, 0, 0 + for pix in self.pixels: + p = img[pix[0], pix[1]] + mr += p[0] + mg += p[1] + mb += p[2] + + leng = len(self.pixels) + return mr/leng, mg/leng, mb/leng + + +class Mask: + def __init__(self, image): + self.image = cv2.imread(image) # Passer l'url et l'ouvrir avec cv2 + self.active_px = [ # Iterer sur tous les pixels de l'image pour trouver ceux qui sont != 0 0 0 + (a, b) + for a in range(0, 720) for b in range(0, 1280) + if (self.image[a, b].any() and + (int(self.image[a, b][0]) + int(self.image[a, b][1]) + int(self.image[a, b][2]) > 50)) + ] + + self.zone1 = Zone(Y_MIN_Z1, Y_MAX_Z1, 20, self.active_px, self.image) + self.zone2 = Zone(Y_MIN_Z2, Y_MAX_Z2, 20, self.active_px, self.image) + self.zone3 = Zone(Y_MIN_Z3, Y_MAX_Z3, 20, self.active_px, self.image) + + +def process_frame_moyennes(frame, mask): + + if(process_zone_moyennes(frame, mask.zone1) and # Passer à travers les zones de la classe mask, faire la moyenne des pixels + process_zone_moyennes(frame, mask.zone2) and + process_zone_moyennes(frame, mask.zone3)): + return 1 + else: + return 0 + + +def process_zone_moyennes(frame, zone): # calculer la diff avec la moyenne des bonnes immages + moy_r, moy_g, moy_b = zone.get_moyennes(frame) + if math.sqrt(pow(moy_r - zone.moyenne_R, 2) + pow(moy_g - zone.moyenne_G, 2) + pow(moy_b - zone.moyenne_B, 2)) < zone.threshold: + return 1 + else: + return 0 + + +def is_image_from_robot_view(frame): + return process_frame_moyennes(frame, mask_img) + + +# Opens the Video file +mask_img = Mask(f'{__file__}/../mask.jpg') +video_path = TWITCH_DSET / 'videos' / 'Rm.mp4' +cap = cv2.VideoCapture(str(video_path)) + +i = 0 +while cap.isOpened(): + ret, rframe = cap.read() + if not ret: + break + if i % 15 == 0: + if process_frame_moyennes(rframe, mask_img): + cv2.imwrite(f"{RES_DIR}/NewVisionAlone/-frame-{i+1:06}.jpg", rframe) + i += 1 + + +# t1 = time.time() +# for i in range (0, 10000): +# processframemoyennes(frame, mask) # 7.43s 10.17s +# print("FinishedFM", time.time() - t1) +# +# t1 = time.time() +# for i in range (0 , 10000): +# processframe(frame, mask) # 11.26s ou 15.2s +# print("FinishedF", time.time() - t1) + +# t1 = time.time() +# for i in range (0 , 10000): # 41.54s +# ret, frame = cap.read() +# print("FinishedCap", time.time() - t1) + +print("Finished New Vision Alone", time.time() - t1) +cap.release() +cv2.destroyAllWindows() + + diff --git a/common/research/dataset/twitch/mask.jpg b/common/research/dataset/twitch/mask.jpg index e9e4deb9b4153abdcb743056c72fbf30a58715cd..78b9df0c77ec279e0f4f9d32e216fd63f3ce8196 100644 Binary files a/common/research/dataset/twitch/mask.jpg and b/common/research/dataset/twitch/mask.jpg differ