
ELE8304
Very Large Scale Integrated Circuits

Documentation

mini-riscv processor

Professor:

Yvon Savaria

yvon.savaria@polymtl.ca

Teacher:

Mickaël Fiorentino

mickael.fiorentino@polymtl.ca

Lab instructor:

Érika Miller-Jolicoeur

erika.miller-jolicoeur@polymtl.ca

Automne 2020

CONTENTS

1 Introduction 2

2 Architecture 3

2.1 Instruction Set Architecture . 3

2.1.1 Branches . 4

2.1.2 Access to the data memory . 5

2.1.3 Arithmetical & Logical operations . 6

2.2 Programming . 7

2.2.1 Memory interfaces . 7

2.2.2 Compiling . 8

2.2.3 Assembly . 8

2.2.4 Registers . 8

3 Microarchitecture 9

3.1 Modules . 10

3.1.1 Adder . 10

3.1.2 ALU . 11

3.1.3 Program Counter . 12

3.1.4 Register File . 13

3.2 Pipeline . 15

3.2.1 Instruction Fetch (IF) . 15

3.2.2 Instruction Decode (ID) . 16

3.2.3 Execute (EX) . 17

3.2.4 Memory Access (ME) . 17

3.2.5 Write-Back (WB) . 17

3.3 Hazards . 18

mailto:yvon.savaria@polymtl.ca
mailto:mickael.fiorentino@polymtl.ca
erika.miller-jolicoeur@polymtl.ca

1 INTRODUCTION

The performance improvements of microprocessors—since the Intel 4004 in 1971—takes place on two

main avenues:

1. Transistor technologies: The reduction of transistor sizes, the increase in integration density, and

the voltages drops, have enabled a constant increase of the operating frequency of microproces-

sors at a near constant power density.

2. Microarchitectural design techniques: Pipelining, caches architectures, branch predictors, buses,

etc. allow to extract the most performances from the transistor technologies.

For example, FIGURE 1 shows the layout of a RISCV PULP microprocessor, developed by ETH Zurich in

2015. It was manufactured by STMicroelectronics with a 28 nm CMOS FD-SOI technology. It contains 2.5

millions of logic gates (2500 kGE—Gate Equivalent), occupying a total area of 2.7 mm2, and consuming

1.2 mW at 50 MHz with a near-threshold power supply of 0.6 V.

FIGURE 1: Layout of the RISCV PULPv3 microprocessor

This laboratory consists in designing, and implementing with a 45 nm CMOS technology, a simple

RISCV microprocessor called mini-riscv. Its instruction set architecture (ISA) is derived from the RV32I

architecture, and its microarchitecture uses a 5-stages pipeline. The objective of this laboratory is to

make you go through the main steps of the design of a microprocessor, from its hardware description in

VHDL, up to its layout.

2

2 ARCHITECTURE

This part presents the architecture of the mini-riscv processor. That is, the specifications defining the

hardware/software interface. We will first deal with the instruction set architecture, then with the in-

struction and data memories interfaces, and we will finish by basic concepts of assembly language, and

few compilation directives.

2.1 INSTRUCTION SET ARCHITECTURE

The instruction set architecture (ISA) is the specification that a processor should implement in order

to be compliant with the associated software stack. This includes the list of instructions, instruction

formats, addressing modes, etc.. The mini-riscv ISA is derived from the RV32I specification. It is based

on the RISC (Reduced Instruction Set Computer) design principles, which can be summarized as follow:

• Instructions are encoded in a fixed format.

• Arithmetical and logical operations are only performed on registers: mini-riscv contains a register

file of 32×32 bits (x0...x31), with x0=0x0.

• The data memory is only accessible from the load and store instructions (lw and sw in the mini-

riscv). To perform an operation on memory elements, one must first load the memory element in

a register, then perform the operation, and finally store the result back in memory.

The mini-riscv ISA uses a fixed instruction format of 32 bits. There are 6 different instruction formats,

as shown on FIGURE 2.

R-TYPE funct7 rs2 rs1 funct3 rd opcode

I-TYPE I-imm[11:0] rs1 funct3 rd opcode

S-TYPE rs1 funct3 S-imm[4:0] opcodeS-imm[11:5] rs2

B-TYPE rs1 funct3 opcodeB-imm[12] rs2B-imm[10:5] B-imm[4:1] B-imm[11]

U-TYPE opcodeU-imm[31:12] rd

J-TYPE opcoderdJ-imm[20] J-imm[19:12]J-imm[11]J-imm[10:1]

06781112141519202124253031

FIGURE 2: Instruction formats

The funct7, funct3, and opcode portions encode the type of instructions (e.g. add, sub, beq). The

rs1, rs2, and rd portions encode the registers addresses (operands and destination respectively), and

the *-imm[] portions encode immediate values. We can distinguish between 5 immediate formats,

which values encoded in the various instruction formats are extended to 32 bits following the encod-

ing presented on FIGURE 3 (here inst[] refers to the portions in the instruction format).

FIGURE 4 details the 25 instructions that are supported by the mini-riscv, as well as the instruction

format associated with each of them.

3

https://riscv.org/technical/specifications/

I-IMM

S-IMM

B-IMM

U-IMM

J-IMM 0inst[24:21]

01451019203031

inst[31] inst[30:25]inst[20]inst[19:12]

0inst[31] inst[19:12]inst[30:20]

0inst[11:8]inst[31] inst[30:25]inst[7]

inst[11:8]inst[31] inst[30:25] inst[7]

inst[24:21]inst[31] inst[30:25] inst[20]

1112

FIGURE 3: Immediate formats

LUIU-imm[31:12] rd 0110111

JALrdJ-imm[20 | 10:1 | 11 | 19:12] 1101111

JALRrdI-imm[11:0] 1100111000rs1

BEQB-imm[4:1|11]B-imm[12|10:5] 1100011000rs1rs2

LWrdI-imm[11:0] 0000011010rs1

SWS-imm[4:0]S-imm[11:5] 0100011010rs1rs2

ADDIrdI-imm[11:0] 0010011000rs1

SLTIrdI-imm[11:0] 0010011010rs1

SLTIUrdI-imm[11:0] 0010011011rs1

XORIrdI-imm[11:0] 0010011100rs1

ANDIrdI-imm[11:0] 0010011111rs1
ORIrdI-imm[11:0] 0010011110rs1

SLLI0000000 0010011001rs1shamt rd

ADD0000000 0110011000rs1rs2 rd

SRLI0000000 0010011101rs1shamt rd

SRAI0100000 0010011101rs1shamt rd

SUB0100000 0110011000rs1rs2 rd

SLL0000000 0110011001rs1rs2 rd

SLT0000000 0110011010rs1rs2 rd

SLTU0000000 0110011011rs1rs2 rd

XOR0000000 0110011100rs1rs2 rd

SRL0000000 0110011101rs1rs2 rd

SRA0100000 0110011101rs1rs2 rd

OR0000000 0110011110rs1rs2 rd

AND0000000 0110011111rs1rs2 rd

FIGURE 4: List of instruction supported by the mini-riscv

2.1.1 BRANCHES

Unconditional branches instructions—also called jumps—JAL (Jump And Link) and JALR (Jump And

Link Register), are presented in FIGURE 5. They modify the program counter.

• The JAL instruction uses the J-TYPE format, where the 20 bits immediate (offset) encodes the

range of the branch relatively to the current value of the program counter: the offset is extended

on 32 bits signed with the J-IMM immediate format, and is added to the program counter to form

the branch destination address. The address of the instruction following the branch (pc+4) is saved

in the destination register (dest).

• The JALR instruction uses the I-TYPE format. It performs an unconditional branch that is inde-

pendent from the value of the program counter: the 12 bits immediate (offset) is extended on

32 bits signed with the I-IMM immediate format, and is added to the base register to form the

4

JAL

rdJ-imm[20 | 10:1 | 11 | 19:12] opcode

JALR

rdI-imm[11:0] opcodefunct3rs1

DEST

DEST0BASEOFFSET[11:0]

OFFSET[20:1]

FIGURE 5: Instructions de sauts inconditionnels

BEQ

B-imm[4:1|11]B-imm[12|10:5] opcodefunct3rs1rs2

BRANCHOFFSET[11,4:1]OFFSET[12,10:5] SRC1SRC2

FIGURE 6: Instruction de branchement conditionnels

branch destination address. The address of the instruction following the branch (pc+4) is saved in

the destination register (dest).

• The BEQ (Branch On Equal) instruction is presented in FIGURE 6. It performs a conditional branch,

that is made relatively to the value of the program counter. It uses the B-TYPE instruction format,

where the 12 bits immediate (offset) encodes the range of the branch. The offset is extend

on 32b bits signed with the B-IMM immediate format, and is added to the program counter to

form the branch destination address. If the branching condition is satisfied—i.e. the src1 and

src2 registers are equal—the branch is taken and the program counter should point to the branch

destination address, otherwise the branch is not taken and the program counter should point to

the instruction following the branch (pc+4).

2.1.2 ACCESS TO THE DATA MEMORY

Instruction to access the data memory—LW (Load Word) and SW (Store Word)—are presented at FIGURE

7. The operate between the register file and the data memory.

LW

rdI-imm[11:0] opcodefunct3rs1

SW

S-imm[4:0]S-imm[11:5] opcodefunct3rs1rs2

LOAD

STORE

DESTBASEOFFSET[11:0]

OFFSET[4:0]BASESRCOFFSET[11:5]

FIGURE 7: Instruction to access the data memory

• The LW instruction uses the I-TYPE format, where the 12-bit immediate (offset) encodes the read

address relatively to the content of the base register: the offset is extended on 32-bits signed and

added to the base register to form the read address. The value read from the data memory at this

address is saved in the dest register.

• The SW instruction uses the S-TYPE format, where the 12-bit immediate (offset) encodes the

write address relatively to the content of the base register: the offset is extended on 32-bit signed

and added to the base register to form the write address. The value of the src register is written in

memory at this address.

5

2.1.3 ARITHMETICAL & LOGICAL OPERATIONS

Arithmetical and logical operations are divided in three flavors: one uses the R-TYPE format, another

uses the I-TYPE format, and the last one uses the U-TYPE format.

LUI

U-imm[31:12] rd opcode

DESTU-imm[31:12]

FIGURE 8: LUI instruction

rdI-imm[11:0] opcodefunct3rs1

ADDI/SLTI[U]/

ANDI/ORI/XORI
DEST OP-IMMSRCI-imm[11:0]

FIGURE 9: Arithmetical and logical instructions operating on immediates

funct7 opcodefunct3rs1rs2 rd

ADD/SLT[U]

AND/OR/XOR
DESTSRC1SRC20000000 OP

SUB DESTSRC1SRC20100000 OP

FIGURE 10: Arithmetical and logical instructions operating on registers

I-imm[11:5] opcodefunct3rs1I-imm[4:0] rd

funct7 opcodefunct3rs1rs2 rd

SLL/SRL

SRA
DEST OPSRCSHAMT[4:0]

0000000

0100000

DEST OP-IMMSRCSHAMT[4:0]
0000000

0100000

SLLI/SRLI

SRAI

FIGURE 11: Shift instructions

• The LUI (Load Upper Immediate) instruction is presented at FIGURE 8. It uses the U-TYPE instruc-

tion format. The instruction puts the first 20 bits (U-imm[31:12]) of its immediate in the 20 most

significant bits of the destination register rd, and fill the rest with zeros.

• Arithmetical and logical instructions that operate on immediates are presented at FIGURE 9. They

use the I-TYPE instruction format, and share the same opcode (OP-IMM). ADDI, ANDI, ORI, and

XORI instructions respectively operate an addition, a logical and, a logical or and a logical xor

between the content of the src register and the immediate value I-imm extended in 32-bit signed.

SLTI and SLTIU (Set Less Than Immediate and Set Less Than Immediate Unsigned) compare the

value of the src register with the immediate value I-imm extended on 32-bit signed or unsigned.

If src < I-imm then dest equals 1, else dest equals 0.

• Arithmetical and logical instructions that operate on registers are presented at FIGURE 10. They

use the R-TYPE instruction format, and share the same opcode (OP). ADD, SUB, AND, OR, and

6

XOR instructions operate respectively an addition, a subtraction, a logical and, a logical or, and a

logical xor between the content of the src1 and of the src2 registers. Note that the SUB instruction

only differs from the ADD instruction by the value of the funct7 field. SLT and SLTU instructions

(Set Less Than and Set Less Than Unsigned) compare the value of the src1 register with the value

of the src2 register (signed and non-signed respectively). If src1 < src2 then dest equals 1, else

dest equals 0.

• Shifts instructions are presented at FIGURE 11. there are three types of shifts: Left shift (SLL: Shift

Left Logical), logical right shift (SRL: Shift Right Logical), and arithmetical right shift (SRA: Shift

Right Arithmetic). There are also equivalent instructions operating on immediates (SLLI, SRLI,

SRAI). The instruction consists in shifting the content of the src register by the value of shamt (5

first bits of the rs2 register, or of the I-imm immediate), and saving the result ins the dest register.

Note that the SRA[I] instruction differs from the SRL[I] instruction only by the value of the funct7

field.

2.2 PROGRAMMING

2.2.1 MEMORY INTERFACES

m
in
i-r
is
cv

imem_addr[8:0]

1K

0

DPMdmem_addr[8:0]

imem_en

imem_read[31:0]

dmem_en

dmem_read[31:0]

dmem_write[31:0]

dmem_we
dmem

imem

2K

port b

port a

FIGURE 12: Memory interfaces

The memory subsystem in the mini-riscv (see FIGURE 12) is composed of a byte-addressable dual-port

memory. This memory is separated in two address spaces of 1kB: the address space of the instruction

memory (imem) is between 0 and 1kB on port a, and the address space of the data memory (dmem) is

between 1kB and 2kB on port b. The memory is an instance of the dpm entity, described in the dpm.vhd

VHDL file (this file is part of the work repository). It is initialized at the beginning of the simulation from a

.hex file containing the list of instructions and data if the program in hexadecimal format. The memory

has a 1 cycle read and write latency.

7

2.2.2 COMPILING

Programming the mini-riscv consists in filling its instruction memory with 32-bit words representing the

program instructions, which should comply with the instruction format presented previously. Programs

can be written in RISC-V assembly and compiled with gcc by using the Makefile provided in the asm/

folder. However, note that the use of gcc is limited by the truncated instruction set of the mini-riscv.

% make help # Display the help

% make riscv BENCHMARK=<f> # Compile the program <f> for mini-riscv

2.2.3 ASSEMBLY

You will find assembly code examples in the riscv_basic.S file, which test the basic features of the

processor, and in the riscv_fibo.S file, which computes the first 20 iterations of the Fibonacci series.

Use these programs in your test-bench to validate the behavior of your processor. Notice the use of

pseudo-instructions: nop, li, and beqz, which are converted by the compiler:

li rd, imm[31:0]

lui tmp, imm[31:12]

ori rd, tmp, imm[11:0]

beqz rs, offset

beq rs, x0, offset

nop

addi x0, x0, 0

2.2.4 REGISTERS

TABLE 1: Registers naming convention

Name Number Use

zero x0 The value 0

ra x1 Functions return address

sp x2 Stack Pointer

gp x3 Global Pointer

tp x4 Thread Pointer

t0-t2 x5-x7 Temporaries

s0-s1 x8-x9 Save

a0-a7 x10-x17 Functions arguments

s2-s11 x18-x27 Save

t3-t6 x28-x31 Temporaries

8

3 MICROARCHITECTURE

This chapter presents the microarchitecture of the mini-riscv that you must design as part of this lab-

oratory. It implements the mini-riscv architecture presented in the previous chapter with a 5-stages

pipeline. First, the description of the modules will allow you to design the mini-riscv components. Then,

the description of each pipeline stage will allow you to design the core. Finally, details regarding the

management of conflicts in the pipeline will allow you to make your final system work. Note that the

constants used in a non-generic fashion in the modules are defined in a package (riscv_pkg.vhd) that

is provided in the work repository. To include of these constant in a module, use the following code

snippets (SOURCE 1):

SOURCE 1: Package contenant les constantes

library work;

use work.riscv_pkg.all;

The core interface is presented at FIGURE 13, and its VHDL entity description is presented at SOURCE

2. The *_imem_* signals constitute the interface with the instruction memory, and the *_dmem_* signals

constitute the interface with the data memory.

MINI-RISCV

i_rstn o_imem_addr[8:0]
o_dmem_addr[8:0]
o_dmem_write[31:0]
o_dmem_we

i_clk
i_imem_read[31:0]
i_dmem_read[31:0]

FIGURE 13: mini-riscv interface (core)

SOURCE 2: VHDL entity of the mini-riscv (core)

entity riscv_core is

port (

i_rstn : in std_logic;

i_clk : in std_logic;

i_imem_read : in std_logic_vector(31 downto 0);

o_imem_addr : out std_logic_vector(8 downto 0);

i_dmem_read : in std_logic_vector(31 downto 0);

o_dmem_we : in std_logic;

o_dmem_addr : out std_logic_vector(8 downto 0)

o_dmem_write : out std_logic_vector(31 downto 0));

end entity riscv_core;

9

3.1 MODULES

This section deals with the modules of the mini-riscv. That is, the ALU (composed of a generic adder,

shifter, and logical operations), a program counter (PC), and a register file (RF).

3.1.1 ADDER

The adder module is used in the ALU. It is based on the ripple-carry design technique, which relies on

half-adder in series propagating the carry at each stage to perform an multi-bits add operation. FIGURE

14 shows the diagram of the half-adder, and FIGURE 15 shows the diagram of the adder. SOURCE 3 shows

the VHDL entity description of the adder.

HALF-ADDER

a

b sum

carry

FIGURE 14: half-adder

i_a[N-1:0]

i_b[N-1:0]

o_sum[N:0]

half-adder

a b

carrysum

i_sign
i_sub

ADDER
sign-extend

half-adder

a b

carrysum

half-adder

a b

carrysum

half-adder

a b

carrysum

half-adder

a b

carrysum

half-adder

a b

carrysum

half-adder

a b

carrysum

2'complement

FIGURE 15: adder

The adder module is combinational. It uses a generic parameter N which defines the size of the data

signals, as well as the number of half-adder that are required. By default, N = 32, The adder perform

the sum of i_a (N bits) and i_b (N bits) and puts the result on the o_sum (N+1 bits) signal. When the

i_sign input equals 0, the operations are performed on unsigned values. Similarly, when the the i_sign

input equals 1, the operations are performed on signed values. When the i_sub input equals 0, the

operation to perform is an addition (i_a + i_b). Similarly, when the i_sub input equals 0, the operation

to perform is a subtraction (i_a - i_b). The subtraction is performed by using the 2’s complement of

the i_b signal.

10

SOURCE 3: VHDL entity of the adder

entity riscv_adder is

generic (N : positive := 32);

port (

i_a : in std_logic_vector(N-1 downto 0);

i_b : in std_logic_vector(N-1 downto 0);

i_sign : in std_logic;

i_sub : in std_logic;

o_sum : out std_logic_vector(N downto 0));

end entity riscv_adder;

3.1.2 ALU

The ALU module perform arithmetical and logical operations on the i_src1 and i_src2 data inputs,

and puts a result on the o_res output, which varies according the values of the i_opcode and the

i_arith control inputs. The ALU does not contain generic parameters. FIGURE 16 shows the diagram of

the ALU, and SOURCE 4 shows its VHDL entity description.

ALU

o_res[XLEN-1:0]

i_shamt[SHAMT-1:0]

i_arith

shifter

adder

< 0 ?

SH

SLT

ADD

AND

XOR

OR

i_opcode[ALUOP-1:0]

i_src1[XLEN-1:0]

i_sign

i_src2[XLEN-1:0]

FIGURE 16: ALU

The ALU module is combinational. It is composed of three main blocs that perform the following

operations (see TABLE 2 for a summary):

• The adder bloc is an instance of the adder module. It performs the addition and the subtraction

operations on the i_src1 and the i_src2 signals. Note that the i_arith signal of the ALU is con-

nected to the i_sub signal of the adder. Part of the set-less-than (SLT) instructions are performed

in the adder: when the result of the adder is negative, the output equals 1, otherwise it equals 0.

11

• The shifter bloc performs the left shifts (SL) and the right shifts (SR) instructions on the i_src1

signals. The number of bits to shifts are specified by the i_shamt input. The type of shift is derived

from the control inputs i_opcode and i_arith: The right shift must be logical (zero padding)

when i_arith equals 0, and arithmetic (MSB padding) when i_arith equals 1. The left shift is

always logical.

• The logical bloc performs the logical operations AND, OR, and XOR on the i_src1 and i_src2

signals.

SOURCE 4: VHDL entity of the ALU

entity riscv_alu is

port (

i_arith : in std_logic;

i_sign : in std_logic;

i_opcode : in std_logic_vector(ALUOP_WIDTH-1 downto 0);

i_shamt : in std_logic_vector(SHAMT_WIDTH-1 downto 0);

i_src1 : in std_logic_vector(XLEN-1 downto 0);

i_src2 : in std_logic_vector(XLEN-1 downto 0);

o_res : out std_logic_vector(XLEN-1 downto 0));

end entity riscv_alu;

TABLE 2: Operations performed in the ALU

Opcode Bloc Condition Opération

ALUOP_ADD Adder i_arith = 0 addition

ALUOP_ADD Adder i_arith = 1 subtraction

ALUOP_SLT Adder 1 if adder_res < 0, else 0

ALUOP_SL Shifter left shift

ALUOP_SR Shifter i_arith = 0 logical right shift

ALUOP_SR Shifter i_arith = 1 arithmetical right shift

ALUOP_XOR Logique XOR

ALUOP_OR Logique OR

ALUOP_AND Logique AND

3.1.3 PROGRAM COUNTER

The program counter (PC) is used in the mini-riscv to control the instruction memory address bus. The

output of the PC always points to the address in memory where the next instruction to be executed

is stored. The PC contains two generic parameters: RESET_VECTOR and XLEN. by default, XLEN = 32,

and RESET_VECTOR = 16#00000000#. FIGURE 17 shows the diagram of the PC, and SOURCE 5 shows its

VHDL entity.

12

PC

o_pc[XLEN-1:0]

i_transfert

adder

+4

i_target[XLEN-1:0]

i_rstn
i_stall

i_clk

en
rst

RESET_VECTOR0

1

FIGURE 17: Program Counter (PC)

The PC is a sequential module. It must behave as follow: At each rising edge of the clock input (i_clk),

the output (o_pc) is updated. We denote pc the signal at the output of the register. The reset is asyn-

chronous: pc is initialized by RESET_VECTOR when i_rstn equals 0. If i_transfert equals 1, pc is

driven by i_target, else pc is driven by the output of the adder (pc + 4). When i_stall equals 1, pc

keep its previous value.

SOURCE 5: VHDL entity of the PC

entity riscv_pc is

generic (RESET_VECTOR : natural := 16#00000000#);

port (

i_clk, in_rstn : in std_logic;

i_stall : in std_logic;

i_transfert : in std_logic;

i_target : in std_logic_vector(XLEN-1 downto 0);

o_pc : out std_logic_vector(XLEN-1 downto 0));

end entity riscv_pc;

3.1.4 REGISTER FILE

The register file (RF) controls the read and write accesses to the 32 32-bit registers of the mini-riscv. It

contains two generic parameters, REG and XLEN, which define the size of the address and data signals.

By default REG = 5 and XLEN = 32. FIGURE 18 shows the diagram of the RF, and SOURCE 6 shows its

VHDL entity description. The RF is a sequential module. It must behave as follow: each address pointed

by the (i_addr_*) inputs corresponds to a register accessible by the (i_data_w and o_data_*) signals.

The address 0x0 always contains the value 0. The reset is asynchronous: every register is reset to 0 when

i_rstn equals 0. The writing of data is performed on the rising edge of the clock input (i_clk). The

register pointed by the i_addr_w address is driven by: i_data_w is the i_we signal equals 1; its previous

value otherwise. The reading of data is performed on the rising edge of the clock input (i_clk). The

13

outputs o_data_ra/rb are driven by the registers pointed by the i_addr_ra/rb addresses. When a

reading address is equal to a writing address, the outputs must be driven by the value of i_data_w.

RF

o_data_ra[XLEN-1:0]

i_addr_ra[REG-1:0]

i_rstn

i_we

i_clk

en
rst

=0

=

=

i_addr_rb[REG-1:0]

i_addr_w[REG-1:0]

i_data_w[XLEN-1:0]

o_data_rb[XLEN-1:0]

FIGURE 18: Register File (RF)

SOURCE 6: VHDL entity of the RF

entity riscv_rf is

port (

i_clk : in std_logic;

i_rstn : in std_logic;

i_we : in std_logic;

i_addr_ra : in std_logic_vector(REG-1 downto 0);

o_data_ra : out std_logic_vector(XLEN-1 downto 0);

i_addr_rb : in std_logic_vector(REG-1 downto 0);

o_data_rb : out std_logic_vector(XLEN-1 downto 0);

i_addr_w : in std_logic_vector(REG-1 downto 0);

i_data_w : in std_logic_vector(XLEN-1 downto 0));

end entity riscv_rf;

14

3.2 PIPELINE

Instruction level parallelism (ILP) consists in concurrently computing the steps of an instruction with

the steps of previous instructions in a program. Pipelining is a design technique implementing the ILP

at the hardware level: each step of an instruction is associated with a stage of the pipeline. The microar-

chitecture of the mini-riscv is based on a 5-stages pipeline, splitting the instructions in 5 steps as shown

in FIGURE 19:

• Fetch (IF): Read the next instruction from the instruction memory

• Decode (ID): Determine the type of instruction and read operands in the RF.

• Execute (EX): Perform the operations on the operands

• Memory (ME): If required, access the data memory to read or write a value.

• Write-Back (WB): Write the result in the RF.

FETCH

IF
/I

D

DECODE

ID
/E

X

EXECUTE
EX

/M
E

ME
/W

B

MEMORY
WRITE

BACK

FIGURE 19: 5-stages pipeline of the mini-riscv

3.2.1 INSTRUCTION FETCH (IF)

In the IF stage, the mini-riscv fetches a new instruction in the instruction memory, as shown in FIGURE

20. The PC provides the address of the next instruction to process at each cycle. Consequently, the

output of the PC must be interfaced with the instruction memory bus. The value returned by the memory

contains the next instruction to process, which is saved in the IF/ID state registers. Note that many

control signals come from the EX stage.

FETCH

transfert
target
stallPC

Étage EX

IF
/I

D

I-MEM
imem_addr

imem_read

flush

FIGURE 20: IF pipeline stage

15

3.2.2 INSTRUCTION DECODE (ID)

In the IS stage, the mini-riscv generates all the control and data signals from the instruction word pro-

vided by the IF stage, and produce the operands to be used in the EX stage. In particular, this stage:

• Generates the signals that identify an instruction (opcode, funct3, funct7).

• Generates the address signals allowing to read and write operands in the RF (rs1_addr, rs2_addr,

and rd_addr). The write address must be passed along the pipeline until the WB stage.

• Access the RF from the read addresses to fetch the operands. Note that the RF a 1 cycle latency.

• Generate the immediate values with the right formats (see FIGURE 2).

• Generate all the control signals (e.g. is it a branch ? is it a data memory access ? should the result

be written back in the RF ? etc.).

All the control signals and immediate values must then be saved in the ID/EX state registers.

DECODE

RF

Étage EX

ID
/E

X

flush

Predecode

Decode

rs1_data

rs2_data

opcode
funct3

rs1_addr

rs2_addr

Ét
ag

e
IF

Étage WB

we

rd_data

rd_addr

FIGURE 21: ID pipeline stage

16

3.2.3 EXECUTE (EX)

In the EX stage, the mini-riscv executes the operation of the instruction. Arithmetical and logical opera-

tions are performed in the ALU, and branches outcome are decided, as shown in FIGURE 22. In particular,

this stage is responsible for:

• Generating the arithmetical and logical operations results.

• Generating the read or write address for the data memory access.

• Determine the branch outcome.

• Generate the branches destination address.

Note that the operands on which the operations are performed must be computed prior to this stage,

depending on the instruction format and control signals, from the ID stage.

EXECUTE

Ét
ag

e
ID

EX
/M

E

PC transfert

alu_result

store_data

pc_transfert

ALU

pc_target

Imm

rs2_data

rs1_data

pc adder

branch

jump

FIGURE 22: EX pipeline stage

3.2.4 MEMORY ACCESS (ME)

In the ME stage, the mini-riscv accesses the data memory only in case of a load (lw) or a store (sw)

instruction. Results are transmitted to the ME/WB registers as shown in FIGURE 23.

3.2.5 WRITE-BACK (WB)

In the WB stage, the mini-riscv write (if necessary) the result of the instruction in the RF at the address

pointed by rd_addr. In case of a load instruction, the value read from the data memory (dmem_read)

must be used, otherwise, the value coming from the ALU (alu_result) must be used, as shown in FIG-

URE 24.

17

MEMORY

Ét
ag

e
EX

ME
/W

B

alu_result

rd_addr

D-MEM

alu_result

dmem_read

dm
em

_a
dd

r

store_data

rd_addr

FIGURE 23: ME pipeline stage

WRITE-BACK

Ét
ag

e
M

E

alu_result

dmem_read

rd_addr

rd_data

FIGURE 24: Étage de pipeline WB

3.3 HAZARDS

Instruction level parallelism implemented in a pipeline causes issues, called hazards, that alter the se-

quentiality of operations in a program. To restore the original sequentiality of the program, some results

may be forwarded between pipeline stages, some pipeline stages may be stalled, and some other may

be flushed. The microarchitecture of the mini-riscv must implement the hardware mechanism enabling

the proper management of hazards. Note that the test program (riscv_fibo.asm) was designed to high-

light the proper behavior of the mini-riscv in the presence of hazards. In the mini-riscv, there are three

categories of hazards:

• Structural hazards occur when two instructions try to access the same resource at the same cycle.

In the mini-riscv, it occurs when two instructions concurrently access a value at the same address

in the RF. To alleviate this issue, the RF was designed such that the written value is duplicated in an

independent register.

• Data hazards occur when an instruction depends on the result of a previous instruction. In the

mini-riscv, it occurs when an instruction tries to read an operand in the RF (ID stage) that was not

yet updated by a preceding instruction (WB stage). The majority of these hazards are solved by

forwarding the result of an instruction from the MW and WB stages to the EX stages. In the case of

18

a load (lw) instruction, forwarding is not enough because the result is only known at the ME stage.

In the mini-riscv, this type of hazard is solved by applying a 1 cycle stall to the pipeline, in addition

to forwarding. FIGURE 25 shows how stalls should be implemented in the pipeline.

• Control hazards occur each time the PC is altered by a branch. 3 cycles are required before a jal,

jalr, or beq instruction alters the PC, because the outcome is computed at the EX stage. During

the two previous cycles, two instructions are fetched into the pipeline. If the branch is indeed

taken, these two instructions must be flushed out of the pipeline to prevent them from altering the

state of the processor. The mini-riscv resolves conditional branches (beq) with a predict-not-taken

strategy, which assumes that, by default, the branch is not taken. Instructions following the branch

are fetched and start their execution. At the EX stage, if the branch is taken, the two instructions

are flushed, otherwise (as assumed) they can continue their normal execution.

FETCH

IF
/I

D

DECODE

ID
/E

X

EXECUTE

EX
/M

E

ME
/W

B

MEMORY
WRITE

BACK

FIGURE 25: Implementation of the forwarding in the pipeline

19

	Introduction
	Architecture
	Instruction Set Architecture
	Branches
	Access to the data memory
	Arithmetical & Logical operations

	Programming
	Memory interfaces
	Compiling
	Assembly
	Registers

	Microarchitecture
	Modules
	Adder
	ALU
	Program Counter
	Register File

	Pipeline
	Instruction Fetch (IF)
	Instruction Decode (ID)
	Execute (EX)
	Memory Access (ME)
	Write-Back (WB)

	Hazards

